Using 1n to denote the natural logarithm, the general model estimated was as follows:

 $\ln \mathbf{Q}_{jt} = \alpha_{0j} + \alpha_{1j} \ln \mathbf{Y}_{jt} + \alpha_{2j} \ln \mathbf{P}_{jt} + \alpha_{3j} \ln \mathbf{S}_{jt} + \alpha_{4j} \ln \mathbf{H}_{jt} + \alpha_{5j} \ln \mathbf{D}_{jt} + \alpha_{6j} \mathbf{T}_t$ + ϵ_{it}

Where Q_{jt} = per person consumption of beef in region *j* in year *t* Y_{jt} = real per person expenditure in region *j* in year *t* P_{jt} = real retail price of beef in region *j* in year *t* S_{jt} = real retail price of fish in region *j* in year *t* H_{jt} = average number of people per household in region *j* in year *t* D_{jt} = population density in region *j* in year *t* T_t = time in year *t j* = region t = year, 1974 to 1994

 α_{ij} = parameters to be estimated, for *i* = 1 to 6

 ε_{jt} = error term